Molecular Biocoding of Insulin – Amino Acid Gly

Lutvo Kurić

Abstract - The modern science mainly treats the biochemical basis of sequencing in bio-macromolecules and processes in medicine and biochemistry. One can ask weather the language of biochemistry is the adequate scientific language to explain the phenomenon in that science. Is there maybe some other language, out of biochemistry, that determines how the biochemical processes will function and what the structure and organization of life systems will be? The research results provide some answers to these questions. They reveal to us that the process of sequencing in bio-macromolecules is conditioned and determined not only through biochemical, but also through cybernetic and information principles. Many studies have indicated that analysis of protein sequence codes and various sequence-based prediction approaches, such as predicting drug-target interaction networks (He et al., 2010), predicting functions of proteins (Hu et al., 2011; Kannan et al., 2008), analysis and prediction of the metabolic stability of proteins (Huang et al., 2010), predicting the network of substrate-enzyme-product triads (Chen et al., 2010), membrane protein type prediction (Cai and Chou, 2006; Cai et al., 2003; Cai et al., 2004), protein structural class prediction (Cai et al., 2006; Ding et al., 2007), protein secondary structure prediction (Chen et al., 2009; Ding et al., 2009b), enzyme family class prediction (Cai et al., 2005; Ding et al., 2009a; Wang et al., 2010), identifying cyclin proteins (Mohabatkar, 2010), protein subcellular location prediction (Chou and Shen, 2010a; Chou and Shen, 2010b; Kandaswamy et al., 2010; Liu et al., 2010), among many others as summarized in a recent review (Chou, 2011), can timely provide very useful information and insights for both basic research and drug design and hence are widely welcome by science community. The present study is attempted to develop a novel sequence-based method for studying insulin in hopes that it may become a useful tool in the relevant areas.

Index Terms-Amino Acid Gly, Human Insulin, Insulin Model, Insulin Code.

1 INTRODUCTION

The biologic role of any given protein in essential life processes, eg, insulin, depends on the positioning of its component amino acids, and is understood by the "positioning of letters forming words". Each of these words has its biochemical base. If this base is expressed by corresponding discrete numbers, it can be seen that any given base has its own program, along with its own unique cybernetics and information characteristics.

Indeed, the sequencing of the molecule is determined not only by distin biochemical features, but also by cybernetic and information principles. For this reason, research in this field deals more with the quantitative rather than qualitative characteristcs of genetic information and its biochemical basis. For the purposes of this paper, specific physical and chemical factors have been selected in order to express the genetic information for insulin.Numerical values are them assigned to these factors, enabling them to be measured. In this way it is possible to determine oif a connection really exists between the quantitative ratios in the process of transfer of genetic information and the qualitative appearance of the insulin molecule. To select these factors, preference is given to classical physical and chemical parameters, including the

number of atoms in the relevant amino acids, their analog values, the position in these amino acids in the peptide chain, and their frenquencies. There is a arge numbers of these parameters, and each of their gives important genetic information. Going through this process, it becomes clear that there is a mathematical relationship between quantitative ratios and the qualitative appearance of the biochemical "genetic processes" and that there is a measurement method that can be used to describe the biochemistry of insulin.

2 METHODS

Insulin can be represented by two different forms, ie, a discrete form and a sequential form. In the discrete form, a molecule of insulin is represented by a set of discrete codes or a multiple dimension vector. In the sequential form, an insulin molecule is represent by a series of amino acids according to the order of their position in the chains 1AI0.

Therefore, the sequential form can naturally reflect all the information about the sequence order and lenght of an insulin molecule. The key issue is whether we can develop a different discrete method of representing an insulin molecule that will allow accomodation of partial, if not all sequence order information? Because a protein sequence is usually represented by a series of amino acids should be assigned to these codes in order to optimally convert the sequence order information into a series of numbers for the discrete form representation?

3 Expression of Insulin Code Matrix- 1AI0

The matrix mechanism of Insulin, the evolution of biomacromolecules and, especially, the biochemical evolution of Insulin language, have been analyzed by the application of cybernetic methods, information theory and system theory, respectively. The primary structure of a molecule of Insulin is the exact specification of its atomic composition and the chemical bonds connecting those atoms.

3.1 Model

									1	AI0	:A									
G	Т	v	Е	Q	с	с	т	s	I I	с	s	L	Y	Q	L	Е	N	Y	С	N
10	22	19	19	20	14	14	17	14	22	14	14	22	24	20	22	19	17	24	14	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
									1	A TO	·D									
									1	AI0	:В									
			F	V	Ν	Q	н	I	С	G	S	Н	L	V	Е	Α	L			
			23	19	17	20	20	22	14	10	14	20	22	19	19	13	22			
			22	23	24	25	26	27	28	29	30	31	32	33	34	35	36			
																		_		
			Y	L	v	С	G	Е	R	G	F	I	Y	т	Ρ	к	т			
			24	22	19	14	10	19	26	10	23	22	24	17	17	24	17			
			37	38	39	40	41	42	43	44	45	46	47	48	49	50	51			
										etc										

The structure **1AI0** has in total **12** chains: A,B,C,D,E,F,G,H,I,J,K,L.

Fig. 1. Group of chains A,B,C,D,E,F,G,H,I,J,K,L.

Notes: Aforementioned aminoacids are positioned from number 1 to 306. Numbers 1, 2, 3, n... present the position of a certain aminoacid. This positioning is of the key importance for understanding of programmatic, cybernetic and information principles in this protein. The scientific key for interpretation of bio chemical processes is the same for insulin and as well as for the other proteins and other sequences in biochemistry.

The first aminoacid in this example has 10 atoms, the second one 22, the third one 19, etc. They have exactly these numbers of atoms because there are many codes in the insulin molecule, analog codes, and other voded features. In fact, there is a cybernetic algorithm which it is "recorded" that the firs amino acid has to have 10 atoms, the second one 22, the third one 19, etc. The first amino acid has its own biochemistry, as does the second and the third, etc. The obvious conclusion is that there is a concrete relationship between quantitative ratios in the process of transfer of genetic information and qualitative appearance, ie, the characteristcs of the organism.

3.2 Algorithm

We shall now give some mathematical evidences that will prove that in the biochemistry of hemoglob in there really is programmatic and cybernetic algorithm in which it is "recorded",

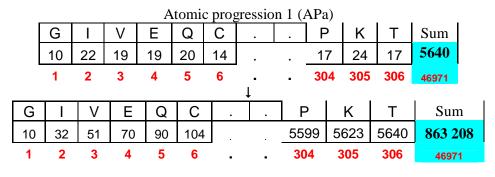
in the language of mathematics, how the molecule will be built and what will be the quantitative characteristics of the given genetic information.

3.2.1 Atomic progression

Step 1 (Amino acids from 1 to 306)

 $AC_1 = 10$ atoms; $AC_2 = 22$ atoms; $AC_3 = 19$ atoms;... $AC_{306} = 17$ atoms;

$$[AC_1 + (AC_1 + AC_2) + (AC_1 + AC_2 + AC_3)..., + (AC_1 + AC_2 + AC_3..., + AC_{147})] = S_1;$$


 $AC_1 = APa1 = 10;$ (AC₁+ AC₂) = (10+22) = APa2 = 32;

 $(AC_{1}+AC_{2}+AC_{3}) = (10+22+19) = APa_{3} = 51;$ $(AC_{1}+AC_{2}+AC_{3...}, +AC_{306}) = APa_{306} = 5640$ atoms; $APa_{1,2,3,n} = Atomic progression of amino acids 1,2,3,n$

 $[APa_1+APa_2+APa_3)..., + APa_{306}] = (10+32+51..., + 5640) = S_1;$

 $S_1 = 863\ 208;$

Example :

(0+10) = 10; (10+22)=32; (10+11+19) = 51; etc.

Fig. 2. Atomic progression 1 (APa) of amino acids from 1 to 306.

Notes: By using chemical-information procedures, we calculated the arithmetic progression for the information content of aforementioned aminoacids.

Step 2 (Amino acids from 306 to 1)

 $AC_{306} = 17$ atoms; $AC_{305} = 24$ atoms; $AC_{304} = 17$ atoms;... $AC_1 = 10$ atoms;

 $[AC_{306} + (AC_{306} + AC_{305}) + (AC_{306} + AC_{305} + AC_{304}) \dots + (AC_{306} + AC_{305} + AC_{304} \dots + AC_1)] = S_2;$

$$AC_{306} = APb_{306} = 17;$$

(AC₃₀₆+ AC₃₀₅) = (17+24) = APb₃₀₆ = 41;

 $(AC_{306}+AC_{305}+AC_{304}) = (17+24+17) = APb_{304} = 58;$ $(AC_{306}+AC_{305}+AC_{304}..., +AC_1) = APb_1 = 5640 \text{ atoms};$ $APb_{306,305,304,...,1} = Atomic progression of amino acids 306,305,304,...1;$

 $[APb_{306}+APb_{305}+APb_{1304})..., + APb_1] = (17+41+58..., + 5640) = 868\ 272;$

$$S_2 = 868\ 272;$$

Example:

Atomic progression 2 (APb)

G	Ι	V			Ι		Y	Т		Р	K		Т	Sum
10	22	19			22	2	4	17	7 1	7	24		17	<mark>5640</mark>
1	2	3			301	3	02	30	33	04	305	53	606	46971
			•	_		Ţ								
Sum	G		V			•		I	Υ	٦	Γ	Ρ	K	Т
868 272	5640	5630	5608				12	21	99	7	5	58	41	17
46971	1	2	3				30	01	302	30)3	304	305	306
	((0+17)	= 17; (17-	+24)	=41	; (1	7+2	4+17	()=5	58; e	etc.		

Fig. 3. Schematic representation of the atomic progression 2 from 306 to 1.

Within the digital pictures in biochemistry, the physical and chemical parameters are in a strict compliance with programmatic, cybernetic and information principles. Each bar in the protein chain attracts only the corresponding aminoacid, and only the relevant aminoacid can be positioned at certain place in the chain. Each peptide chain can have the exact number of aminoacids necessary to meet the strictly determined mathematical conditioning. It can have as many atoms as necessary to meet the mathematical balance of the biochemical phenomenon at certain mathematical level, etc. The digital language of biochemistry has a countless number of codes and analogue codes, as well as other information content. These pictures enable us to realize the very essence of functioning of biochemical processes. There are some examples:

Table 1.Atomic progression APa and APb (Amino acid Gly – position from
1 to 306 AA)

	The	struct	ure 1A	10 – An	nino ac	id Gly		
	G	G	G	G	G	G	G	G
Number								
of atoms	10	10	10	10	10	10	10	10
Rank	1	29	41	44	52	80	92	95
APa	10	523	741	796	950	1463	1681	1736
APb	5640	5127	4909	4854	4700	4187	3969	3914
AP(a,b)	5650	5650	5650	5650	5650	5650	5650	5650
())	G	G	G	G	G	G	G	G
Number								
Number	G	G	G	G	G	G	G	G
Number of atoms	G 10	G 10	G 10	G 10	G 10	G 10	G 10	G 10
Number of atoms Rank	G 10 103	G 10 <mark>131</mark>	G 10 143	G 10 146	G 10 154	G 10 182	G 10 194	G 10 197

	G	G	G	G	G	G	G	G
Number								
of atoms	10	10	10	10	10	10	10	10
Rank	205	233	245	248	256	284	296	299
APa	3770	4283	4501	4556	4710	5223	5441	5496
APb	1880	1367	1149	1094	940	427	209	154
AP(a,b)	5650	5650	5650	5650	5650	5650	5650	5650

Table 1. Schematic representation of the atomic progression APa and APb (Amino acid Gly position from 1 to 306 AA).

Notes: Namely, having mathematically analyzed the atomic preogression model of Insulin Model (Table 1) we have found out that the protein code is based on a periodic law. This being the only to "read" the picture, the solution of the main problem (concering an arrangement where each amino acid takes only one, precisely determined position in the code), is quite manifest:

Atomic progression model of insulin should, in fact, be "remodelled" into a periodic system. Examples:

			Atomi	c prog	ressior	n APa a	and APb			
	G	G	G	G	G	G	G	G		
	¥	$\mathbf{+}$	¥	$\mathbf{+}$	$\mathbf{+}$	$\mathbf{+}$	¥	$\mathbf{+}$		
Rank	299	1	29	296	41	284	44	256	>	1250
	¥	¥	¥	¥	¥	$\mathbf{+}$	¥	¥		
APa	5496	10	523	5441	741	5223	796	4710	>	22940
	¥	¥	¥	¥	¥	$\mathbf{+}$	¥	¥		
R	-144	-144	314	314	314	314	-144	-144	>	680
	↑	↑	↑	↑	↑	1	↑	↑		
APb	5640	154	209	5127	427	4909	940	4854	>	22260
	↑	1	1	↑	↑	1	↑	↑		
	G	G	G	G	G	G	G	G		
Rank	1	299	296	29	284	41	256	44	>	1250
	R >	• (5496-56	40) = (-))144; (1	0-154)	= (-)144	; (523-209) = 314; et	tc.	
	G	G	G	G	G	G	G	G	_	
	¥	\mathbf{A}	$\mathbf{+}$	\mathbf{A}	$\mathbf{+}$	$\mathbf{+}$	¥	\mathbf{A}		
Rank	52	248	80	245	92	233	95	205	>	1250
	¥	\mathbf{A}	$\mathbf{+}$	\mathbf{A}	$\mathbf{+}$	$\mathbf{+}$	¥	\mathbf{A}		
APa	950	4556	1463	4501	1681	4283	1736	3770	>	22940
	¥	Ŷ	¥	¥	¥	$\mathbf{+}$	¥	¥		
R	-144	-144	314	314	314	314	-144	-144	>	680
	↑	1	↑	↑	↑	1	↑	1		
APb	1094	4700	1149	4187	1367	3969	1880	3914	>	22260
	↑	1	1	↑	↑	1	↑	↑		
	G	G	G	G	G	G	G	G		
Rank	248	52	245	80	233	92	205	95	>	1250
	G	G	G	G	G	G	G	G		
	¥	$\mathbf{+}$	¥	¥	¥	$\mathbf{+}$	¥	$\mathbf{+}$	J	
Rank	103	197	131	194	143	182	146	154	>	1250

Atomic progression APa and APh

		¥		4		¥	¥	↓	¥	↓		¥			
APa		189	0	36	16	2403	3561	2621	3343	267	6	2830	>	22	940
		Ψ		1		¥	$\mathbf{\Lambda}$	¥	¥	4		$\mathbf{\Psi}$		10 146 1 2676 28 ↓ 144 1 144 2820 2820 28 10 154 1 G 10 154 1 1 1 1 1 1 1 1 1 1 1 1 1	
R		-14	4	-14	44	314	314	314	314	-14	4	-144	>	6	80
		↑		1		↑	↑	↑	↑	1		↑			
APb		203		37	60	2089	3247	2307	3029	282	20	2974	>	22	260
		↑		1		↑	↑	↑	↑	1		↑			
		G		G	6	G	G	G	G	G		G			
Rank	‹	19	7	10)3	194	131	182	143	15	4	146	>	12	250
	G	ì	G		G	G	G	G	G	G	;	G	G	G	G
	1		$\mathbf{\Psi}$		¥	$\mathbf{\Psi}$	$\mathbf{\Psi}$	\mathbf{A}	¥	1		10	10	10	10
Rank	29	9	1		44	256	52	248	95	20	5	103	197	146	154
	1	,	¥		¥	$\mathbf{\Psi}$	$\mathbf{\Psi}$	\mathbf{A}	¥	1		¥	¥	\mathbf{A}	¥
APa	549	96	10	, 7	796	4710	950	4556	1736	37	70 1	890	3616	2676	2830
	1	,	¥		¥	$\mathbf{\Psi}$	$\mathbf{\Psi}$	\mathbf{A}	¥	1		¥	¥	\mathbf{A}	¥
	<mark>-1</mark> 4	<mark>14</mark>	-14 4		<mark>144</mark>	<mark>-144</mark>	<mark>-144</mark>	<mark>-144</mark>	<mark>-144</mark>	- <mark>14</mark>	14 ₋	<mark>144</mark>	<mark>-144</mark>	<mark>-144</mark>	<mark>-144</mark>
	1		↑		↑	1	↑	↑	↑	1		↑	↑	↑	
APb	564	40	154	. <u>,</u>	940	4854	1094	4700	188) 39 [,]	14 2	034	3760	2820	2974
	1		↑		↑	1	↑	↑	1	1		↑	↑	↑	1
	G	i	G		G	G	G	G	G	G		G	G		G
Rank	10		10		10	10	10	10	10	10		10	10		10
	1		299		256	44	248	52	205	9	5 1	97	103	154	146
		G	i _	G	G	G	G	G	G	G	G	G	G	G	;
		4		¥	$\mathbf{\Psi}$	¥	¥	¥	↓	$\mathbf{\Psi}$	10	10	10) 10	D
Ra	ank	29		296	41	284	80	245	92	233	131	194	14	3 18	2
1			1	¥	$\mathbf{+}$	¥	$\mathbf{\Lambda}$	¥	¥	¥	¥	¥	¥	4	•
Α	Ра	52	3 5	5441	741	5223	1463	4501	1681	4283	2403	356	1 262	1 334	43
			_	¥	↓	¥	¥	¥	♦	<u>↓</u>	↓	¥	4	_	
		<mark>31</mark>	<mark>4</mark> .	<mark>314</mark>	<mark>314</mark>	<mark>314</mark>	<mark>314</mark>	314	<mark>314</mark>	<mark>314</mark>	<mark>314</mark>	<mark>314</mark>			- 1
1		1		↑	1	↑	↑	↑	↑	<u> </u>	↑	1	↑	1	•
Α	Pb	20	95	5127	427	4909	1149	4187	1367	3969	2089	3247			
		1		↑	↑	↑	↑	↑	↑	↑	↑	↑	↑	1	
		G		G	G	G	G	G	G	G	G	G	G		
-		10		10	10	10	10	10	10	10	10	10	10		
Ra	ank	29	6	29	284	41	245	80	233	92	194	131	18:	2 14	3

Fig. 4. Atomic progression APa and APb (Amino acid Gly - position from 1 to 306 AA).

In this example, the amino acids GIy atomic progression APa and APb as a result was given the codes 144 and 314th.

As we see, the insulin code is itself a unique structure of program, cybernetic and informational system and law.

The research we carried out have shown that atomic progression are one of quantitative characteristics in biochemistry. Atomic progression is, actually, a discrete code that protects and guards genetic information

coded in bio-chemical processes. This a recently discovered code, and more detailed knowledge on it is yet to be discovered.

In a similar way we shall calculate bio codes of other unions of amino acids. Once we do this, we will find out that all these unions of amino acids are connected by various bio codes, analogue codes as well as other quantitative features. Examples:

0117	APa and			_	_		_		
		G	G	G	G	G	G	G	G
1		0	0	0	0	0	٢	0	0
	APa	5496	10	523	5441	741	5223	796	4710
	APa	950	<mark>4556</mark>	1463	4501	1681	4283	1736	3770
	APa	1890	3616	2403	3561	2621	3343	2676	2830
	APb	5640	154	209	5127	427	4909	940	4854
	APb	1094	4700	1149	4187	1367	3969	1880	3914
	APb	2034	3760	2089	3247	2307	3029	2820	2974
		0		0			0		0
			67800					67800	
			G	G	G	G	1	Sum	
			٢	0	۵	٢			
		APa	5496	10	523	5441	>	11470	
		APa	950	4556	1463	4501	>	11470	
		APa	<mark>1890</mark>	3616	<mark>2403</mark>	3561	>	11470	
			G	G	G	G	1	Sum	
		1	٢	0	Ø	Ø			
		APa	741	5223	796	4710	>	11470	
		APa	1681	4283	1736	3770	>	11470	
		APa	2621	3343	2676	2830	>	11470	
			G	G	G	G		Sum	
			٢	0	0	Ø			
		APb	5640	154	209	5127	>	11130	
		APb	1094	4700	1149	4187	>	11130	
		APb	<mark>2034</mark>	3760	2089	3247	>	11130	
			G	G	G	G		Sum	
		I I	0	٥	٢	٢	J		
		APb	427	4909	940	4854	>	11130	
		APb	1367	3969	1880	3914	>	11130	
		APb	2307	3029	2820	2974	>	11130	

Atomic progression APa and APb

Fig. 5. Atomic progression APa and APb (Amino acid GIy – position from 1 to 306 AA).

Atomic progression presented in figure 2 are calculated using the relationship between corresponding groups of those rogressions. These are groups with different progression. There are different ways and methods of selecting these groups of progressions, which method is most efficient some We hope that science will determine which method is most efficient for this selection.

3.2.2 Rank of atomic progression

	G	G	G	G	G	G	G	G	Sum
	0	0	0	0	Ø	0	0	0	
Rank	299	1	29	296	41	284	44	256	1250
Rank	1	299	296	29	284	41	256	44	1250
Rank	52	248	80	245	92	233	9 5	205	1250
Rank	248	52	245	80	233	92	205	9 5	1250
Rank	103	197	131	194	143	182	146	154	1250
Rank	197	103	194	131	182	143	154	146	1250
Sum	900	900	975	975	975	975	900	900	

	G	G	G	G		
	0	0	0	0	Í	
Rank	299	1	29	296	l >	625
Rank	1	299	296	29	>	625
Rank	52	248	80	245	>	625
Rank	248	52	245	80	>	625
Rank	103	197	131	194	>	625
Rank	197	103	194	131	>	625
	G	G	G	G	I.	Sum
	0	0	0	0		
Rank	41	284	44	256	>	625
Rank	284	41	256	44	>	625
Rank	92	233	95	205	>	625
Rank	233	92	205	95	>	625
Rank	143	182	146	154	>	625
Rank	182	143	154	146	>	625
		_		_		
	G	G	G	G		Sum
		i 1		1	1	
	٢	0	٢	۵		
Rank	⊚ 299	1	⊚ 44	256	>	600
Rank Rank					>	
	299	1	44	256		600
Rank	299 1	1 299	44 256	256 44	>	600 600
Rank Rank	299 1 52	1 299 248	44 256 95	256 44 205	> >	600 600 600
Rank Rank Rank Rank Rank	299 1 52 248 103 197	1 299 248 52	44 256 95 205 146 154	256 44 205 95 154 146	> > >	600 600 600 600
Rank Rank Rank Rank	299 1 52 248 103	1 299 248 52 197	44 256 95 205 146	256 44 205 95 154	> > > >	600 600 600 600 600
Rank Rank Rank Rank Rank	299 1 52 248 103 197 900	1 299 248 52 197 103 900	44 256 95 205 146 154 900	256 44 205 95 154 146 900	> > > >	600 600 600 600 600
Rank Rank Rank Rank Rank	299 1 52 248 103 197	1 299 248 52 197 103 900	44 256 95 205 146 154	256 44 205 95 154 146 900 G	> > > >	600 600 600 600 600
Rank Rank Rank Rank Rank	299 1 52 248 103 197 900	1 299 248 52 197 103 900	44 256 95 205 146 154 900	256 44 205 95 154 146 900	> > > >	600 600 600 600 600
Rank Rank Rank Rank Rank	299 1 52 248 103 197 900 G	1 299 248 52 197 103 900	44 256 95 205 146 154 900	256 44 205 95 154 146 900 G	> > > >	600 600 600 600 600
Rank Rank Rank Rank Sum Rank Rank	299 1 52 248 103 197 900 G ⊚ 29 29 296	1 299 248 52 197 103 900 G ⊚ 296 29	44 256 95 205 146 154 900 G ⊚	256 44 205 95 154 146 900 G ⊚	> > > > > >	600 600 600 600 600 Sum
Rank Rank Rank Rank Sum Rank	299 1 52 248 103 197 900 G ⊚ 29	1 299 248 52 197 103 900 G ⊚ 296	44 256 95 205 146 154 900 G ⊚ 41	256 44 205 95 154 146 900 G ⊚ 284 41 233	> > > >	600 600 600 600 600 Sum 650
Rank Rank Rank Rank Sum Rank Rank	299 1 52 248 103 197 900 G ⊚ 29 29 296	1 299 248 52 197 103 900 G ⊚ 296 29	44 256 95 205 146 154 900 G ⊚ 41 284	256 44 205 95 154 146 900 G ⊚ 284 41		600 600 600 600 600 600 Sum 650 650
Rank Rank Rank Rank Sum Rank Rank Rank	299 1 52 248 103 197 900 G ⊚ 29 296 80	1 299 248 52 197 103 900 G ⊚ 296 29 245	44 256 95 205 146 154 900 G ⊚ 41 284 92	256 44 205 95 154 146 900 G ⊚ 284 41 233	> > > > > > > > > > > > > > > > > > >	600 600 600 600 600 500 650 650
Rank Rank Rank Rank Sum Rank Rank Rank Rank	299 1 52 248 103 197 900 G ⊚ 29 29 296 80 245	1 299 248 52 197 103 900 G ⊚ 296 29 245 80	44 256 95 205 146 154 900 G ⊚ 41 284 92 233	256 44 205 95 154 146 900 G ⊚ 284 41 233 92		600 600 600 600 600 Sum 650 650 650 650

Fig. 6. Rank atomic progression APa and APb (Amino acid GIy – position from 1 to 306 AA).

In those examples, we have the mathematical balance in rows and columns in this figure.

In fact, we have discovered the mathematical balance in distribution of sequences in figure 6 is achieved.

3.2.3 Correlation of atomic progression

Atomic progression of this amino acid to us as a result of its correlation give a variety of codes. Here are some examples:

	G	G			G	G			G	G		
	10	10			10	10			10	10		
	41	284	>	325	80	245	>	325	143	182	>	325
APa	741	5223	^	5964	1463	4501	^	5964	2621	3343	^	5964
APb	4909	427	^	5336	4187	1149	^	5336	3029	2307	^	5336
	0	0		۵	0	0		0	0	0		۵
R	314	314		11300	314	314		11300	314	314		11300

	G	G			G	G			G	G		
	10	10			10	10			10	10		
	44	256	^	300	52	248	^	300	146	154	^	300
APa	796	4710	^	5506	950	4556	^	5506	2676	2830	^	5506
APb	4854	940	>	5794	4700	1094	>	5794	2974	2820	>	5794
	0	0		0	0	0		۵	0	0		٢
R	314	314		11300	314	314		11300	314	314		11300

Fig. 7. Correlation of atomic progression and rank of APa and APb (Amino acid Gly – position from 1 to 306 AA).

In those examples we have the correlation of atomic progression and rank of APa and APb.

3.2.4 Odd and even progression

Progression of the APa and APb, in fact, odd and even numbers. These numbers are one of the keys to decoding and decoding molecules insulina. This decoding we can make this:

Steam	progres	ssion										
	G	G	G	G	G	G	G	G	G	G	G	G
	10	10	10	10	10	10	10	10	10	10	10	10
	1	44	52	95	103	146	154	197	205	248	256	299
APa	10	796	950	1736	1890	2676	2830	3616	3770	4556	4710	5496
APb	5640	4854	4700	3914	3760	2974	2820	2034	1880	1094	940	154
	5650	5650	5650	5650	5650	5650	5650	5650	5650	5650	5650	5650

etc.

Steam progression are:

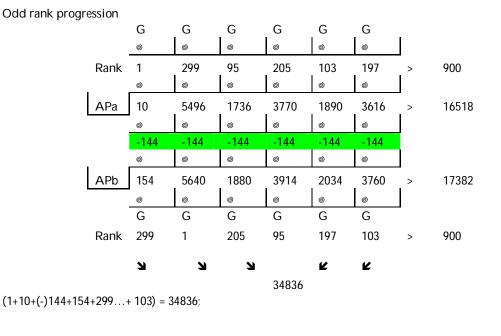
APa = (10, 5640); (1736, 3914); (1890, 3760); etc.

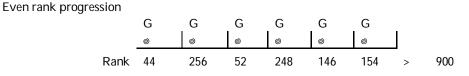
Progression are the odd and even rank.

Odd rank

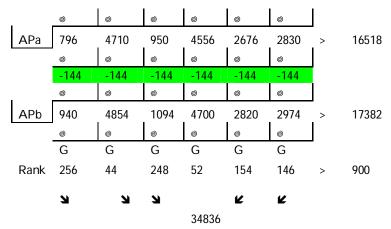
	G	G	G	G	G	G		
	10	10	10	10	10	10		
Rank	1	95	103	197	205	299	>	900

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 ISSN 2229-5518


APa	10	1736	1890	3616	3770	5496		16518
APb	5640	3914	3760	2034	1880	154	>	17382
	5650	5650	5650	5650	5650	5650		
	G	G	G	G	G	G		
	10	10	10	10	10	10		
Rank	44	52	146	154	248	256	>	900
APa	796	950	2676	2830	4556	4710		16518
APb	4854	4700	2974	2820	1094	940	>	17382
	5650	5650	5650	5650	5650	5650		


Odd rank = Even rank = 900; Odd APa = Even APa = 16518; Odd APb = Even APb = 17382;

Even rank


Fig. 8. Odd and even progression of aminoacid Gly.

Notes: Within the digital pictures in biochemistry, the physical and chemical parameters are in a strict compliance with programmatic, cybernetic and information principles. Each bar in the protein chain attracts only the corresponding aminoacid, and only the relevant aminoacid can be positioned at certain place in the chain. Each peptide chain can have the exact number of aminoacids necessary to meet the strictly determined mathematical conditioning. It can have as many atoms as necessary to meet the mathematical balance of the biochemical phenomenon at certain mathematical level, etc. The digital language of biochemistry has a countless number of codes and analogue codes, as well as other information content. These pictures enable us to realize the very essence of functioning of biochemical processes.

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 ISSN 2229-5518

(44+796+ (-)144+940+256...+ 146) = 34836;

Fig. 9. Odd and even rank progression of aminoacid Gly.

Odd AP-a progression

	G	G	G	G	G	G	G	G	G	G	G	G
	10	10	10	10	10	10	10	10	10	10	10	10
	29	41	80	92	131	143	182	194	233	245	284	296
APa	523	741	1463	1681	2403	2621	3343	3561	4283	4501	5223	5441
APb	5127	4909	4187	3969	3247	3029	2307	2089	1367	1149	427	209
	5650	5650	5650	5650	5650	5650	5650	5650	5650	5650	5650	5650

Odd APa progression – Even rank

	G	G	G	G	G	G
	0	0	0	0	0	0
Rank	80	296	92	284	182	194
	0	0	0	0	0	0
APa	1463	5441	1681	5223	3343	3561
	0	0	0	٢	0	0
	1254	1254	1254	1254	1254	1254
	0	0	0	0	0	0
APb	209	4187	427	3969	2089	2307
	0	0	0	0	0	0
	~	<u> </u>	G	G	G	G
	G	G	G	G	G	G

Odd APa progression – Odd rank

	G	G	G	G	G	G
	۵	0	۵	0	0	۵
Rank	29	245	41	233	131	143
	۵	0	۵	۵	۵	0

APa	523	4501	741	4283	2403	2621
	Ø	0	0	0	ø	0
	-626	-626	-626	-626	-626	-626
	0	0	0	0	۵	۵
APb	1149	5127	1367	4909	3029	3247
APb	1149 ⊚	5127 ⊚	1367 ⊚	4909 ⊚	3029 ⊚	3247 ⊚
APb		1	1			
Rank	۵	۵	۵	۵	۵	۵

Even rank and odd rank

		G	G	G	G	G	G	
	_	0	0	0	0	۵	٢	
R	ank							
•	ar	80	296	92	284	182	194	
	ank							
ne	epar	29	245	41	233	131	143	
		51	51	51	51	51	51	
R	ank							
pa	ar	296	80	284	92	194	182	
R	ank							
ne	epar	245	29	233	41	143	131	
		51	51	51	51	51	51	
	\ _ _							

(80-29) = 51; (296-245) = 51; (92-41) = 51;

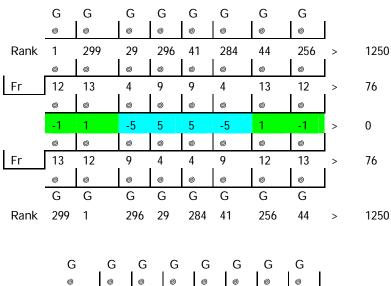
Even APa and odd rank

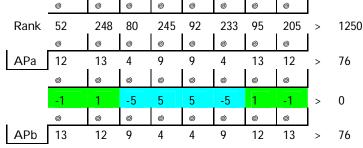
	G	G	G	G	G	G
	٢	0	0	0	0	0
APa rank even APa rank	1463	5441	1681	5223	3343	3561
odd	523	4501	741	4283	2403	2621
	940	940	940	940	940	940
APb odd APb	1149	5127	1367	4909	3029	3247
even	209	4187	427	3969	2089	2307
(00.44)	940	940	940	940	940	940

(80-29) = 51; (296-245) = 51; (92-41) = 51;

Figure 10. Odd AP-a progression, odd APa progression–even rank, odd APa progression –odd rank, even rank and odd rank and even APa and odd rank

3.3 Bio frequency


Insulin is composed of aminoacids with various numerical values. This numerical values are in an irregular order. For example, the first one has 10 atoms, the second one 22. Their frequency is X. Second amino acid has 22 atoms, and the third one 19. Their frequency is Y; etc... Frequency is the measurement for establishment of intervals of numerical values of amino acids in proteins. This value can be positive, negative or a zero value. These frequencies are showing us one completely new dimension of protein sequencing. Through these frequencies we can establish which of aminoacids are of primary, and which are of secondary significance in biochemical processes of insulin. Here is a concrete example:


	G	I	V	Е	Q	С	С	Т
	10	22	19	19	20	14	14	17
	1	2	3	4	5	6	7	8
10	12	-3	0	1	-6	0	3	-3
From 0 to 10 = 10; From 10 to 22 = 1	2; Fro	om 22	2 to 1	9 = (-)) 3; Fi	rom	19 to ⁻	19 = 0; etc

Schematic representation of the amino acid and frequency we will show in the fig.11.

	10 1	10 29) 1) 2	10 11	10 44	10 52	10 80	10 92	10 95	10 10	3	10 131		-		114	;
G	G		G		G	G	G	G		G	C	3	G	G	G		
10	10		10		10	10	10	1()	10	1	0	10	10	10		
154	182	2	194		197	205	233	24	45	248	2	56	284	296	299		
12	4		9		13	12	4	9		13	1	2	4	9	13	>	114;

00

International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 ISSN 2229-5518

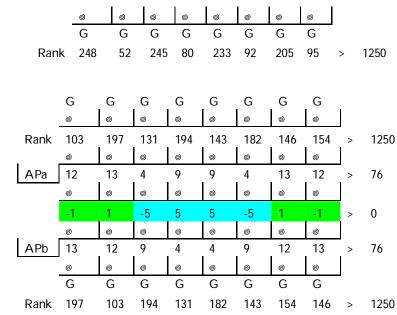


Figure 11. Schematic representation of the amino acid Gly and their frequency

Odd rank and frequency														
	G 10 1 12	G 10 29 4	G 10 41 9	G 10 95 13	G 10 103 12	G 10 131 4	G 10 143 9	G 10 197 13	G 10 205 12	G 10 233 4	G 10 245 9	G 10 299 13	>	114;
Even rank and	d freq	uency	/											
	G	G	G	G	G	G	G	G	G	G	G	G		
	10	10	10	10	10	10	10	10	10	10	10	10		
	44	52	80	92	146	154	182	194	248	256	284	296		
	13	12	4	9	13	12	4	9	13	12	4	9	>	114;
Figure 12. Sch	emati	ic rep	reser	ntatio	n of tl	ne am	ino aci	id Gly	and t	heir o	dd-ev	en ran	k an	d

frequency

Therefore, there is a mathematical balance between the group of aminoacids with positive frequency and those of negative frequency. Aminoacids with a positive frequency have a primary role in the mathematical picture of that protein, and the negative frequencies have a secondary role in it. We assume that aminoacids with a positive frequency have a primary role in the biochemical picture of that protein, and the negative frequencies have a secondary role in it. We assume that aminoacids with a positive frequency have a primary role in the biochemical picture of that protein, and the negative frequencies have a secondary role in it. If this really is the case and research on an experimental level proves it, a radically new way of learning about biochemical processes will be opened.

3.4 Analog bio code

Each numerical value has its analogue expression. For example: The analogue expression for number 19 is 91.

91 || 19

In a similar way we can calculate the analogue expression for any numerical value. Our research has shown that analog codes are quantitative characteristics in biochemistry. Analogue biocode is a discrete code that protects and guards genetic information coded in biochemical processes.

This a recently discovered code, and more detailed knowledge about it is necessary.

Odd rank and analog frequency

Frequencu	>	G 10 1 12	G 10 29 04	G 10 41 09	G 10 95 13	G 10 103 12	G 10 131 04	G 10 143 09	G 10 197 13	G 10 205 12	G 10 233 04	G 10 245 09	G 10 299 13	>	114;
		Ø	0	Ø	٢	Ø	Ø	Ø	0	0	Ø	0	0		
Analog															
frequency	>	21	40	90	31	21	40	90	31	21	40	90	31	>	546;
Even rank and ana	log	frequ	lency												
		G	G	G	G	G	G	G	G	G	G	G	G		
		10	10	10	10	10	10	10	10	10	10	10	10		
		44	52	80	92	146	154	182	194	248	256	284	296		
Frequency	>	13	12	04	09	13	12	04	09	13	12	04	09	>	114;
		0	0	0	0	0	0	0	0	0	0	0	0		
Analog															
Frequency	>	31	21	40	90	31	21	40	90	31	21	40	90	>	546;
Figure 13. Schema	tic r	epres	entat	ion o	f the a	amino	acid (Gly an	d thei	r odd	-even	rank a	ind		
analog f	requ	Jency	,												

Analogue code is , actually, a discrete code that protects and guards genetic information coded in biochemical processes.

In the previous examples we translated the physical and chemical parameters from the language of biochemistry into the digital language of programmatic, cybernetic and information principles. This we did by using the adequate mathematical algorithms. By using chemical-information procedures, we calculated the numerical value for the information content of molecules. What we got this way is the digital picture of the phenomenon of biochemistry. These digital pictures reveal to us a whole new dimension of this science. They reveal to us that the biochemical process is strictly conditioned and determined by programmatic, cybernetic and information principles.

From the previous examples we can see that this protein really has its quantitative characteristics. It can be concluded that there is a connection between quantitative characteristics in the process of transfer of genetic information and the qualitative appearance of given genetic processes.

4 DISCUSSION

The results of our research show that the processes of sequencing the molecules are conditioned and arranged not only with chemical and biochemical lawfulness, but also with program, cybernetic and informational lawfulness too. At the first stage of our research we replaced nucleotides from the Amino Acid Code Matrix with numbers of the atoms and atomic numbers in those nucleotides. Translation of the biochemical language of these amino acids into a digital language may be very useful for developing new methods of predicting protein sub-cellular localization, membrane protein type, protein structure secondary prediction or any other protein attributes.

The success of human genome project has generated deluge of sequence information. The explosion of biological data has challenged scientists to accelerate the speed for their analysis. Nowadays, protein sequences are generally stored in the computer database system in the form of long character strings. It would act like a snail's pace for human beings to read these sequences with the naked eyes (Xiao and Chou, 2007). Also, it is very hard to extract any key features by directly reading these long character strings. However, if they can be converted to some signal process, many important features can be automatically manifested and easily studied by means of the existing tools of information theory (Xiao and Chou, 2007). The novel approach as presented here may help improve this kind of situation.

5 CONCLUSIONS AND PERSPECTIVES

The process of sequencing in bio-macromolecules is conditioned and determined not only through biochemical, but also through cybernetic and information principles. The digital pictures of biochemistry provide us with cybernetic and information interpretation of the scientific facts. Now we have the exact scientific proofs that there is a genetic language that can be described by the theory of systems and cybernetics, and which functions in accordance with certain principles.

BIBLIOGRAPHY

- [1] Cai, Y.D., and Chou, K.C., 2006. Predicting membrane protein type by functional Domain composition and pseudo amino acid composition. J Theor Biol 238, 395-400.
- [2] Cai, Y.D., Zhou, G.P., and Chou, K.C., 2003. Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J 84, 3257-3263.
- [3] Cai, Y.D., Zhou, G.P., and Chou, K.C., 2005. Predicting enzyme family classes by hybridizing gene product composition and pseudo-amino acid composition. J Theor Biol 234, 145-149.
- [4] Cai, Y.D., Feng, K.Y., Lu, W.C., and Chou, K.C., 2006. Using LogitBoost classifier to predict protein structural classes. J Theor Biol 238, 172-176.
- [5] Cai, Y.D., Pong-Wong, R., Feng, K., Jen, J.C.H., and Chou, K.C., 2004. Application of SVM to predict membrane protein types. J Theor Biol 226, 373-376.
- [6] Chen, C., Chen, L., Zou, X., and Cai, P., 2009. Prediction of protein secondary structure content by using the concept of Chou's pseudo amino acid composition and support vector machine. Protein & Peptide Letters 16, 27-31.
- [7] Chen, L., Feng, K.Y., Cai, Y.D., Chou, K.C., and Li, H.P., 2010. Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition. BMC Bioinformatics 11, 293.
- [8] Chou, K.C., 2011. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J Theor Biol 273, 236-247.
- [9] Chou, K.C., and Shen, H.B., 2010a. Cell-PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms. Natural Science 2, 1090-1103 (openly accessible at <u>http://www.scirp.org/journal/NS/</u>).
- [10] Chou, K.C., and Shen, H.B., 2010b. Plant-mPLoc: A Top-Down Strategy to Augment the Power for Predicting Plant Protein Subcellular Localization. PLoS ONE 5, e11335.
- [11] Ding, H., Luo, L., and Lin, H., 2009a. Prediction of cell wall lytic enzymes using Chou's amphiphilic pseudo amino acid composition. Protein & Peptide Letters 16, 351-355.
- [12] Ding, Y.S., Zhang, T.L., and Chou, K.C., 2007. Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein & Peptide Letters 14, 811-815.
- [13] Ding, Y.S., Zhang, T.L., Gu, Q., Zhao, P.Y., and Chou, K.C., 2009b. Using maximum entropy model to predict protein secondary structure with single sequence. Protein &

Peptide Letters 16, 552-560.

- [14] He, Z.S., Zhang, J., Shi, X.H., Hu, L.L., Kong, X.G., Cai, Y.D., and Chou, K.C., 2010. Predicting drug-target interaction networks based on functional groups and biological features. PLoS ONE 5, e9603.
- [15] Hu, L., Huang, T., Shi, X., Lu, W.C., Cai, Y.D., and Chou, K.C., 2011. Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties PLoS ONE 6, e14556.
- [16] Huang, T., Shi, X.H., Wang, P., He, Z., Feng, K.Y., Hu, L., Kong, X., Li, Y.X., Cai, Y.D., and Chou, K.C., 2010. Analysis and prediction of the metabolic stability of proteins based on their sequential features, subcellular locations and interaction networks PLoS ONE 5, e10972.
- [17] Kandaswamy, K.K., Pugalenthi, G., Moller, S., Hartmann, E., Kalies, K.U., Suganthan, P.N., and Martinetz, T., 2010. Prediction of Apoptosis Protein Locations with Genetic Algorithms and Support Vector Machines Through a New Mode of Pseudo Amino Acid Composition. Protein and Peptide Letters 17, 1473-1479.
- [18] Kannan, S., Hauth, A.M., and Burger, G., 2008. Function prediction of hypothetical proteins without sequence similarity to proteins of known function. Protein & Peptide Letters 15, 1107-1116.
- [19] Liu, T., Zheng, X., Wang, C., and Wang, J., 2010. Prediction of Subcellular Location of Apoptosis Proteins using Pseudo Amino Acid Composition: An Approach from Auto Covariance Transformation. Protein & Peptide Letters 17, 1263-9.
- [20] Mohabatkar, H., 2010. Prediction of cyclin proteins using Chou's pseudo amino acid composition. Protein & Peptide Letters 17, 1207-1214.
- [21] Wang, Y.C., Wang, X.B., Yang, Z.X., and Deng, N.Y., 2010. Prediction of enzyme subfamily class via pseudo amino acid composition by incorporating the conjoint triad feature. Protein & Peptide Letters 17, 1441-1449.
- [22] Xiao, X., and Chou, K.C., 2007. Digital coding of amino acids based on hydrophobic index. Protein & Peptide Letters 14, 871-875.